NRC SER Table 5.7-2: List of Baseline Parameters

Table 7.3-1. Background Water Quality Parameters and Indicators for Operational

Bulk Properties	pH Total Dissolved Solids (TDS)
	Conductivity
Cations/Anions	Bicarbonate Alkalinity (as CaCO ₃)
de de construir de la construir de	Calcium, Ca
	Carbonate Alkalinity (as CaCO ₃)
	Chloride, Cl
	Magnesium, Ma
	Nitrate, NO ₂ (as Nitrogen)
	Potassium, K
	Sodium, Na
	Sulfate, SO ₄
	Total Alkalinity (as CaCO ₁)
Trace Metals	Arsenic, As
	Barium, Ba
	Boron, B
	Cadmium, Cd
	Chromium, Cr
	Copper, Cu
	Fluoride, F
	Iron, Fe
	Lead, Pb
	Manganese, Mn
	Mercury, Hg
	Molybdenum, Mo
	Nickel, Ni
	Selenium, Se
	Silver, Ag
	Uranium, U
	Vanadium, V
	Zns. Zn
Radionuclides	Gross Alpha=Alpha Particles
	Gross Bets=Beta Particles and Photons
	Radium, Rs-226

1 pH
2 TDS
3 Conductivity
4 Bicarbonate
5 Calcium
6 Carbonate Alkalinit
7 Chloride
8 Magnesium
9 Nitrate
10 Potassium
11 Sodium
12 Sulfate
13 Total Alkalinity
14 Arsenic
15 Barium
16 Boron
17 Cadmium
18 Chromium
19 Copper
20 Fluoride
21 Iron
22 Lead
23 Manganese
24 Mercury
25 Molybdenum
26 Nickel
27 Selenium
28 Silver
29 Uranium
30 Vanadium
31 Zince
32 Gross Alpha
33 Gross Beta
34 Radium - 226

Table 5.7-2: List of Baseline Parameters

	Major ions	Trace and Minor Elements	Radiological Parameters
1	Alkalinity	Arsenic	Radium 226
2	Bicarbonate	Bartum	Gross Alpha - Total
3	Carbonate	Bioron	Gross Beta + Total
4	Sulfabe	Cadmium	
5	Chloride	Chromium	
6	Nitrate	Copper	
7	Sodium	Picionide	
8	Calcum	leon	
9	Magnesium	Lead	
10	Potassium .	Manganese	
		Mercury	
	Physical Properties	Molybdenum	
11	Conductivity	Nickel	
12	get	Selenium	
13	Total Dissolved Solids (TDS)	Silver	
		Urgenium	
		Vanadum	
31		Zinc	
		1141	

34 total constituents

Monitoring constituent comparison

Table 5.7-2 NRC SER	TR RAI June 2011			laboratory analysis cost for
Table 7.3-1 NRC SEIS	Table 6.1-1		MCL/HA	NRC analytes
NRC Background	NRC Stability Monitoring	Current EPA	(MCL-based)	
pH (1)	(same)	pH (1)	field	
SC (2)		SC (2)	field	
TDS (3)		TDS (3)		WY DEQ GL8-\$363.70
		Turbidity (4)	field	
		Temperature (5)	field	
		D.O. (6)	field	
		ORP (delete)		
		CO ₂ (7)	calculated	
		TOC (8)		
		DOC (9)	300	
Alkalinity (as CaCO3) (4)		Total alkalinity (10)	Total alkalinity	
Bicarbonate alkalinity (5)		Bicarbonate alkalinity (11)		WY DEQ GL8
Carbonate alkalinity (6)		Carbonate alkalinity (12)		WY DEQ GL8
Ca (7)		Ca (13)		WY DEQ GL8
CI (8)		CI (14)		WY DEQ GL8
∕lg (9)		Mg (15)		WY DEQ GL8
NO3 (10)		NO3 (16)	10 mg/L	WY DEQ GL8
		NO2 (17)	1 mg/L	WY DEQ GL8
la (11)		Na (18)		WY DEQ GL8
((12)		K (19)		WY DEQ GL8
		Si (20)		
604 (13)		SO4 (21)	250 mg/L	WY DEQ GL8
		AI (22)		WY DEQ GL8
as (14)	As	As (23)	0.01 mg/L	WY DEQ GL8
a (15)	Ва	Ba (24)	2 mg/L	WY DEQ GL8
3 (16)		B (25)		7 WY DEQ GL8
		Be (27)		
Cd (17)	Cd	Cd (27)	Cd	WY DEQ GL8

Cr (18) Cu (19) Fl (20)	Cr
Fe (21) Pb (22) Mn (23) Hg (24) Mo (25) Ni (26)	Hg
Se (27) Ag (28)	Se Ag
U (29) V (30) Z (31) Gross alpha (32) Gross beta (33) Ra-226 (34)	Gross alpha Ra-226 Ra-228

Cr (28)	Cr	WY DEQ GL8
Cu (29)	Cu	WY DEQ GL8
FI (30)	4 mg/L	WY DEQ GL8
Fe (31)		WY DEQ GL8
Fe (ferrous) (32)		WY DEQ GL8
Pb (33)	Pb	WY DEQ GL8
Mn (34)		WY DEQ GL8
Hg (35)	Hg	WY DEQ GL8
Mo (36)		WY DEQ GL8
Ni (37)		WY DEQ GL8
Sb (38)		TA
Se (39)	Se	WY DEQ GL8
Ag (40)		TA
Sr (41)		
TI (42)	TI	TA
U (43)	U	inlcuded in rads or metals
V (44)		\$18.00
Zn (45)		WY DEQ GL8
Gross alpha (46)	Gross alpha	\$288 for the rads
Gross beta (47)	Gross beta	
Ra-226 (48)	Ra-226	
	Ra-228	

34 parameters 48 parameters 22 parameters 41 parameters

The 14 additional analyties include

1. Turbidity	field measurement
2. Temperature	field measurement
3. DO	field measurement
4. CO2	calculated from other analyses
5. TOC	\$30
6. DOC	\$50

7. NO2	combine with NO3
8. Silica	\$17
9. Ferrous Iron	\$17
10. Aluminum	included 200.8
11. Antimony	included 200.8
12. Beryllium	included 200.8
13. Strontium	included 200.8
14. Thallium	included 200.8

15.Radium 228

additional cost= \$114 104.79 \$219

\$114 x 2482 \$282,948 \$219 x 2482 \$543,037

initial samples Ra-228

Estimates analytical cost for NRC list:

WY DEQ GL8
rads \$288

vanadium \$18

\$670

Wyoming DEQ	(pH & conductivity should be measured in the field at time of collection)	\$363.00 for 1-3 Samples
Well Monitoring	TDS, calculated charge balance, bicarbonate, carbonate,	10% discount for
Guideline #8 (2005)	Fluoride, chloride, nitrite, nitrate, sulfate, ammonia	4+ samples
	As-received metals (B)	
	Total metals (Fe, Mn)	
	Dissolved metals	
	(Ca, Fe, Mg, Na, K, Ba, Al, Cr, Ni, Cu, Zn, As, Se, Mo, Cd, Hg, Pb)	
	Test Analyte/Parameter	

I	est Analyte/Parameter
Bulk Properties	pH Total Dissolved Solids (TDS) Conductivity
Cations/Anions	Bicarbonate Alkalinity (as CaCO ₃) Calcium, Ca Carbonate Alkalinity (as CaCO ₃) Chloride, CI Magnesium, Mg Nitrate, NO ₃ (as Nitrogen) Potassium, K Sodium, Na Sulfate, SO ₄ Total Alkalinity (as CaCO ₃)
Trace Metals	Arsenic, As Barium, Ba Boron, B Cadmium, Cd Chromium, Cr Copper, Cu Fluoride, F Iron, Fe Lead, Pb Manganese, Mn Mercury, Hg Molybdenum, Mo Nickel, Ni Selenium, Se Silver, Ag Uranium, U Vanadium, V Zinc, Zn

Radionuclides	Gross Alpha=Alpha Particles
	Gross Beta=Beta Particles and Photons Radium, Ra-226
*All metals analyses are for dissolved metals. Source: NRC (2003); Powertech (2011).	

Target Analyte – Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na,	200.8 / 6020	\$267.00
Ni, Pb, Sb, Se, Tl, Zn		

without radium 228 with radium 228

VRC License Requirements List of Baseline Water Quality Parameters	Class III Permit Requirements List of water Quality Parameters	Extra Burden Additional analytes under Class III Permit	Alternative Number of additional analytes under the class it Permit
Zandytes	46 mulyes	11. definitional analytes. Temperature Dissolved Oxygen Oxyadano-Reduction Potential CO2 Total Organic Carbon Dissolved Organic Carbon Dissolved Organic Carbon Sistlic Aluminum Specific gravity	venuels of substitution as an inject stude. One code in minus, we could remove 2 parameters: 56 and Radium-228
		specini gravity Turbidity Radium-228	
Geochemical Model Development	Geochemical Model Development	Geochemical Model Development	
Three Scenarios requiring Geochemical Middeling	Three Scenarios requiring Geothernical Modeling	Three Scenarios requiring Geochemical Modeling	
All ISR contaminants restored to pre-minining concentrations:	All ISR contaminants regioned to pre-minining concentrations:	All ISR contaminants restored to pre-mining concentrations:	
One equivalent requirement The NRC relies on monitoring within the injection zone	Reactive Transport Model to demonstrate long term geochemical stability for 14 wellfields.	Powertech would need to compile at least 8 geochemical models for the Welffield Closure Plan it proposed. These models include 1 model for each of the three proposed injection intervals at the Dewey and the Burdock sites.	
		Under the Class IX permit, the timing for the model begins during stability monitoring of first wellfield being closed instead of at the end of the project as Powertech proposed.	
		The difference between Powertech's proposed modeling scenario and the Class II permit scenario is actually only 8 models that need to be developed. The Class III permit probably requires a higher level of effort for the uncertainty analysis than Powertech would have done on its own.	
For License Modification Application to approve Alternate Concentration Limit	An Alternative Concentration Limit is needed for one ore more ISI contaminants	An Alternative Concentration Limit is needed for one ore more ISR contaminan	
ACL application would involve geochemical modeling	Same requirement as ACL application for NRC license, except the Class III Permit also requires a highere level of effort for the quantitative uncertainty arrises than we observed in the two ACL applications we reviewed for ISR projects in VV.	The additional burden under the Class III permit includes more rigorous evaluation o model calibration and uncertainty analysis of model results.	
3. Copanding Extension Pitumes. 3. Copanding Extension Pitumes. Whose equivalent requirement. However for an excursion that is not corrected within 60 days of confirmation, the licensees shall either joil perminate empired on of Indivisers within the wellfield used it be excursion indivisers within the wellfield used it be excursion of indivisers within the wellfield used in amount to ower the full third-sparry cost of correcting an immunit to ower the full third-sparry cost of correcting an immunit to ower the full third-sparry cost of correcting an immunity of the full third permitted in force until the RSC has verified that the excursion has been corrected as been corrected as been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion has been corrected as the second control of the RSC has verified that the excursion of the RSC has verified that the excursion of the RSC has verified that the second control of the RSC has verified that the second control of the RSC has verified that the second control of the RSC has verified that the second control of the RSC has ve	3. Expanding Excursion Planne: Expanding Excursion Planne: Reactive Transport Model to evaluate mobility of contaminants and natural attenuation capability of the downgradient aquifer.	3. Expansing Excussion Planne Powerful Expansing Excussion Planne Powerful Exhauster that year not aware of any 158 operation detecting data that fit the permit criteria of expansing excursion planne. These requirement utility probably now twave to be implemented, except in an extrem and unlikely case. These requirements serve as assurance for the concerned public.	
remediated. Monitoring of Confirmed Excursion Plumi	Monitoring of Confirmed Excursion Plams	Monitoring of Confirmed Exeutsion Plume	
15-day inteval monitoring of perimeter monitoring wells noreased to 7-day interval for monitoring wells impacted by confirmed excursion.	i: From 15-day to 7-day interval monitoring of wells impacted by confirmed excursion and the two unimpacted wells bracketing confirmed excursion plume (see figure to right	For each excursion, two additional wells monitored every 7 days instead of every 15 days for three constituents : specific conductance, total alkalinity and chloride	
Mondoring of Expanding Excursion Plums	Monitoring of Expanding Excursion Plums	Monitoring of Expanding Excursion Plums	James and the second second
Not included instead requirement is if an excursion is not corrected within 60 days of confirmation, the licensee shall either (a terminate injection of lixiviant within the wellfield until the excursion	Develop Groundwater model	Powertech has stated they are not aware of any ISR operation detecting data that fit the permit criteria of expanding excursion plame, so bits requirement is for assurance of concerned public and will probably never have to be implemented, except in case of extreme conditions.	Percenter Monitoring Wells Excursion Plume
is corrected; or (b) increase the surety in an amount to cover the full third-party cost of correcting and cleaning up the excursion. The surety increase shall remain in force until the NRC has verified that the excursion has been corrected and	d		Excursion-impacted wells sometisted a traceased 7-day frequency par NRC. Excursion-impacted wells
remediated. The written 60-day excursion report shall identify which course of action the licensee is taking. Under no circumstances does this condition eliminate the requirement that the licensee			monitored at increased 7-day frequency per EPA
remediate the excursion to meet groundwater protection standards as required by LC 10.6 for all constituents established per LC 11.3.	1		Injection/production wells in one asine
Operational Montlining of Private Well Licence says Annually for all Baseline Parameters Safety Evaluation Reports says Quarterly	Operational Monitoring of Private Well Permit says Quarterly for all Water Quality Parameters	Operational Monitoring of Private Well: 3 additional quarterly samples per year for all water quality parameters	
Excursion Montioring during the Post-Restoration Stabilit Monitoring Phase License says excursion montioring during ISR operation.	y Excursion Montlering during the Post-Restoration Stability Monitoring Phase Excursion monitoring is required during the Stability Monitoring Phase	Excursion Monitoring during the Post-Restoration Stability Monitoring Phas- 50-day interval monitoring of the 3 excursion parameters for all perimeter monitoring	
acteries says excursion monitoring during rax operation, safety Evaluation Report and Powertech Technical Evaluation Report for NRC Dense say there is excursion monitoring during this phase.	and seemed in a sequined during the seeming Modified ing Priese	oc-usy interval monitoring to the 3 excussion parameters for an perimeter monitoring wells during a minimum of 5 sampling events bracketing 4 quarters.	8
	abandon all lisiconic boreholes within the perminneer monitoring well ring during the aquifer pump test required for the wellfield data package	Requirements related to location and plugging of improperly plugged boreholes	
License with a condition similar to one included in the Strata license in WY: Prior to conducting tests for a wellfield data package, the	The ERA believes the Permitter has already done due diligence in characterizing any improperty plugged historic exploratory boreholes that are evident at the ground unifier. No further characterization is possible until the welffield pump tests are conducted to identify breaches in the Eraon Shale continger one. Welfilled pump tests are also required under the license, so there is no additional burden under this permit requirement.	In this case, the requirement in the Class III Permit is less burdensome than the license.	

Wellfield	Injection Interval	Ore Length (ft)	Ore Width (ft)	Perimeter (ft)	Ore Area (ft²)
B1	L/M Chilson	5000	575	1435	0 2875000
B2	L/M Chilson	4250	300) 1230	0 1275000
B3	Upper Chilson	2250	200	810	0 450000
B4	L/M Chilson	7750	250	1920	0 1937500
B5	Upper Chilson	4750	200	1310	950000
В6	L/M Chilson	9500	600	2340	0 5700000
В7	L/M Chilson	4000	250	1170	0 1000000
B8	L/M Chilson	3375	2750) 1545	0 9281250
B9	L/M Chilson	2000	200	760	0 400000
B10	Lower Fall River	1000	200	560	0 200000
D1	Lower Fall River	5000	1000	1520	0 5000000
D2	L/M Chilson	6150	200	1590	0 1230000
D3	Lower Fall River	2500	200	860	0 500000
D4	Upper Chilson	3500	200	1060	0 700000

Calculate A	Area with Allumium			
Wellfield	Injection Interval	Ore Length (ft)	Ore Width (ft)	
B1	L/M Chilson	5000	575	nc
B2	L/M Chilson	1750	300)
В3	Upper Chilson	2250	200	no
B4	L/M Chilson	2000	250)
B5	Upper Chilson	4750	200	all
B6	L/M Chilson	9500	600	no
B7	L/M Chilson	4000	250	no
B8	L/M Chilson	1500	200)
B9	L/M Chilson	2000	200	all

Alluvium Area (ft²)	
none	
	525000
none	
	500000
	950000
none	
none	
	300000
	400000

B10	Lower Fall River	1000	200 a
D1	Lower Fall River	2250	1000
D2	L/M Chilson	6750	200
D3	Lower Fall River	2500	200 a
D4	Upper Chilson	1250	200

200000
2250000
1350000
500000
250000

Wellfield #	# CAB wells
B-1	17
B-2	7
B-3	3
B-4	11
B-5	5
B-6	33
B-7	6
B-8	53
B-9	2
B-10	1
D-1	29
D-2	7
D-3	3
D-4	4
	180.778

No previous analytical results from 10 of the 30

Number of samples analyzed for Table 8 param Initial sample from each excursion monitoring v 4 quarters, 10 operational monitoring wells CAB wells, 4 initial samples CAB wells, 5 stability monitoring samples

List of operational monitoring wells

11 alluvial wells

9 Fall River wells

8 Chilson wells

181

3 Unkpapa wells

total wells:

analytical cost for EPA analytes/sample: annual cost (4 samples/year)

	1]
# PMWs	Acres	# MO1 wells	# MU wells	# MO2 wells	# MO3 wells	#MO4 wells
34	. 66.0	17	0	8	8	
29	29.3	7	0	4	4	
18			3	1	0	
46	MS		0	6		Same Comment Control of Control
31		CINEDAC IIII CARACTAR AND	5	3		
57				16		
27				3		
37		53		27	27	
17				1		
12				0	0	
36			29	0	0	
38	Ka	7	0	4		
20		3	3	0	0	
25		S		2		
425		181	45	74	69	
DGCB		Lower Fall River		alluvium		
		Upper Fall River				
		Middle Chilson				
		Upper Chilson				
	# Acres of alluvium	# alluvial wells		MO1 wells	181	
done		0		MO2	74	
done	12.0523416			MO2	69	
done		0		MU	45	
done	11.47842057	1		alluvial wells	21	
done	21.80899908	3			390	
done		0		# PMW	425	
done		0			815	
done	6.887052342	1				
done	9.182736455					

done	4.591368228	1
done	51.65289256	6
done	30.99173554	4
done	11.47842057	1
done	5.739210285	1
		21 alluvial wells

operational montioring wells:

eters		# samples w/ radium	# samples w/o radium	
vell	815	815	0	
	40	10	30	
724	723	180	540	
905	904	180	720	
	2482	1185	1290	
	\$ 219.00	\$ 219.00	\$114	
	\$ 543,558.00	\$ 259,515.00	\$147,060	\$ 406,575.00 new cost
	this is Powertech's est	imate for analysis of the ϵ	extra EPA analytes	
	but I need to add in th	ne quarterly analysis of op	erational moniting wells & p	private wells
	3 private wells			
	annual monitoring	\$ 657.00	for just the EPA analytes	
31	. 3 additional quarters	\$ 8,001.00	for all analytes (NRC+EPA)	NRC analyte cost: \$670
\$ 6,789.00		\$ 8,658.00	annual cost	see Analyte Comparison worksheet
\$ 27,156.00	total aanual cost:	\$ 35,814.00		
				NRC+EPA list \$ 889.00

	# 100' by 100'	
# total excursion	wellfield	
monitoring wells	patterns	well count
67	287.5	574
45	127.5	
25	45	
70	193.75	
47	95	
122	570	
39	100	
144	928.125	
23	40	
15	20	
100	500	
56	123	
27	50	
35	70	
814	0	

non-inj zone wells PMW # excursion monitoring wells

				Perimeter	
Wellfield	Injection Interval	Ore Length (ft)	Ore Width (ft)	MRW (ft)	Ore Area (ft ²)
B-WF1	L/M Chilson	5000	575	14350	2.88E+06
B-WF2	L/M Chilson	4250	300	12300	1275000
B-WF3	Upper Chilson	2250	200	8100	450000
B-WF4	L/M Chilson	7750	250	19200	1937500
B-WF5	Upper Chilson	4750	200	13100	950000
B-WF6	L/M Chilson	9500	600	23400	5700000
B-WF7	L/M Chilson	4000	250	11700	1000000
B-WF8	L/M Chilson	3375	2750	15450	9281250
B-WF9	L/M Chilson	2000	200	7600	400000
B-WF10	Lower Fall River	1000	200	5600	200000
D-WF1	Lower Fall River	5000	1000	15200	5000000
D-WF2	L/M Chilson	6150	200	15900	1230000
D-WF3	Lower Fall River	2500	200	8600	500000
D-WF4	Upper Chilson	3500	200	10600	700000

	how many feet		
1.2% ore	does that add in	new total area	
area (ft²)	each direction?	(ft ²)	compare area
3.45E+04	7	2.91E+06	2.91E+06
12750	113	1.29E+06	1.80E+06
4500	67	4.55E+05	
19375	139	1.96E+06	
9500	97	9.60E+05	
57000	239	5.76E+06	
10000	100	1.01E+06	
92812.5	305	9.37E+06	
4000	63	4.04E+05	
2000	45	2.02E+05	
50000	224	5.05E+06	
12300	111	1.24E+06	
5000	71	5.05E+05	
7000	84	7.07E+05	

Cadmus Hrly Rates
P1
P2
P3
P4
1 year
9 months
6 months
lab testing per wellfield
1st model
next model 22 23 30 53 2080 hrs 1560 693 \$200,000 400,000

rer wellfield \$200,000 | \$400,000 | \$500,000

\$1,520,176 per wellfield \$108,584 Expanding plume analysis cost 3 wells for one year= \$4,104.00 1 well for one year= \$1,368.00

110,240.00
200,000.00 lab testing
310,240.00 stt L/M Chilson model
5227,560 next L/M Chilson wellfield
1365,360.00 plus 6 more L/M Chilson wellfields
293,072.00 stt Upper Chilson model
455,120.00 Plus 2 more Upper Chilson models
5230,72.00 st Fall River model
5227,560 plus 1 more Fall River model
3,171,984.00 \$ 36,746.67 \$ 200,000.00 \$ 236,746.67 Ist model \$ 2,743,312.00 13 more models \$ 2,980,058.67 total \$

The total uranium production as U3O8 over the life of the Project is estimated to be 14.268 million pounds, from Report

Effective date: December 3, 2019

Report Date: January 17, 2020

An economic analysis has been performed based on the current Project uranium production estimates using the production schedule in conjunction with the estimated recoverable resource of 14.268 million pounds 3 as discussed in Section 17.

This analysis also assumes a constant price of \$55.00 per pound for U308 over the life of the Project. The calculated cost per pound of uranium produced is \$28.88 including all costs, with an estimated direct cash operating costs of \$10.46 per pound of U308 (Pre-U.S. federal income tax) and an estimated "all in cost" of approximately \$32.27 (Post-U.S. federal income tax) per pound of U308.

- \$ 326.45 14.268 million pounds x \$22.88 per pound
- \$ 19.20 over 17 years of ISR operations \$89,422 annual modeling costs over 17 years

0.046574%

	Years from construction			
	through end of GW	Post-restoration	Total years	of
Wellfield	Restoration (2015 PEA)	monitoring timeframe	DGCB mon	itoring
B-1	4.5		10	14.5
B-2	2		10	12
B-3	1.25		10	11.25
B-4	1.75		10	11.75
B-5	1.75		10	11.75
B-6	3.25		10	13.25
B-7	1.25		10	11.25
B-8	1.5		10	11.5
B-9	3.5		10	13.5
B-10	1.5		10	11.5
D-1	5.25		10	15.25
D-2	3.5		10	13.5
D-3	2		10	12
D-4	2.25		10	12.25
		total years of monitoring	ng	175.25
# DGCB wells				701
Dewey Area	14,000 ft / 1 well every 400 ft		35	
Burdock Area	#PMRWs		0 DGCB ft	
B-1	34		13	5,000
B-2	29		15	6,000
B-3	18		0	
B-4	46		8	3000
B-5	31		16	
B-6	57		18	7000
B-7	27		8	3250
B-8	37		18	7000
B-9	17		0	
B-10	12		6	
			135 total DGCB	wells

4 quarterly samples per year				
58	3	Cost per sample for NRC analytes \$670		
48	3	#samples		
45	5	4 samples 815 excursion monitroing wells		
47	7	4 initial samples 181 CAB wells		
47		5 stability monitoring samples CAB wells		
53	3	4 initial samples 10 operational monitoring wells		
45	5			
46	5			
54	1			
46	5			
61	L			
54	1			
48	3	PT's cost estimate for EPA monitoring		
	and the state of t	2482 samples * \$219 \$ 543,558.00		
701	L samples collected	31 operational monitoring wells + 3 private wells monitor		
701 samples for 135 wells		723 12.75 yrs operational monitoring		
cost per sample:	\$ 127			
cost based on my estimate		multiply 12.75 years of operational monitoring		
or NRC+EPA list	\$ 84,208,413	63		

PT additional cost for EPA requirements

PT estimated analytical cost incl DGCB subtract cost for EPA requirements

to get cost for DGCB well monitoring	
Analysis of cost for expanding excursion	n plume
cost for whole analyte list NRC + EPA	\$ EPA list \$114
EPA list with Radium	
EPA list without Radium	
expanding excursion plume costs	
per well per year	initial sample wi
11 months without radium	
for an injection zone expanding plume	2 wells impacted:

total cost: \$3,302,430

3260

724

905

40

total # samples 4929

with radium 228 red quarterly

\$35,814.00

\$456,628.50

\$1,000,186.50

\$ 13,102,600.00

\$1,000,187.00

\$12,102,413.00

		2		
w/ radium 228=		\$219		
\$	889.00			
\$	784.00			
h radium		\$	889.00	
		\$	8,624.00	
		\$	9,513.00	
		\$	19,026.00	